Geminin-Deficient Neural Stem Cells Exhibit Normal Cell Division and Normal Neurogenesis
نویسندگان
چکیده
Neural stem cells (NSCs) are the progenitors of neurons and glial cells during both embryonic development and adult life. The unstable regulatory protein Geminin (Gmnn) is thought to maintain neural stem cells in an undifferentiated state while they proliferate. Geminin inhibits neuronal differentiation in cultured cells by antagonizing interactions between the chromatin remodeling protein Brg1 and the neural-specific transcription factors Neurogenin and NeuroD. Geminin is widely expressed in the CNS during throughout embryonic development, and Geminin expression is down-regulated when neuronal precursor cells undergo terminal differentiation. Over-expression of Geminin in gastrula-stage Xenopus embryos can expand the size of the neural plate. The role of Geminin in regulating vertebrate neurogenesis in vivo has not been rigorously examined. To address this question, we created a strain of Nestin-Cre/Gmnn(fl/fl) mice in which the Geminin gene was specifically deleted from NSCs. Interestingly, we found no major defects in the development or function of the central nervous system. Neural-specific Gmnn(Δ/Δ) mice are viable and fertile and display no obvious neurological or neuroanatomical abnormalities. They have normal numbers of BrdU(+) NSCs in the subgranular zone of the dentate gyrus, and Gmnn(Δ/Δ) NSCs give rise to normal numbers of mature neurons in pulse-chase experiments. Gmnn(Δ/Δ) neurosphere cells differentiate normally into both neurons and glial cells when grown in growth factor-deficient medium. Both the growth rate and the cell cycle distribution of cultured Gmnn(Δ/Δ) neurosphere cells are indistinguishable from controls. We conclude that Geminin is largely dispensable for most of embryonic and adult mammalian neurogenesis.
منابع مشابه
Gene regulatory networks in neural cell fate acquisition from genome-wide chromatin association of Geminin and Zic1
Neural cell fate acquisition is mediated by transcription factors expressed in nascent neuroectoderm, including Geminin and members of the Zic transcription factor family. However, regulatory networks through which this occurs are not well defined. Here, we identified Geminin-associated chromatin locations in embryonic stem cells and Geminin- and Zic1-associated locations during neural fate acq...
متن کاملGeminin regulates the transcriptional and epigenetic status of neuronal 1 fate promoting genes during mammalian neurogenesis
20 21 Regulating the transition from lineage-restricted progenitors to terminally 22 differentiated cells is a central aspect of nervous system development. Here, we 23 investigated the role of the nucleoprotein Geminin in regulating neurogenesis at a 24 mechanistic level during both Xenopus primary neurogenesis and mammalian 25 neuronal differentiation in vitro. The latter work utilized neural...
متن کاملGeminin regulates the transcriptional and epigenetic status of neuronal fate-promoting genes during mammalian neurogenesis.
Regulating the transition from lineage-restricted progenitors to terminally differentiated cells is a central aspect of nervous system development. Here, we investigated the role of the nucleoprotein geminin in regulating neurogenesis at a mechanistic level during both Xenopus primary neurogenesis and mammalian neuronal differentiation in vitro. The latter work utilized neural cells derived fro...
متن کاملGeminin deletion from hematopoietic cells causes anemia and thrombocytosis in mice.
HSCs maintain the circulating blood cell population. Defects in the orderly pattern of hematopoietic cell division and differentiation can lead to leukemia, myeloproliferative disorders, or marrow failure; however, the factors that control this pattern are incompletely understood. Geminin is an unstable regulatory protein that regulates the extent of DNA replication and is thought to coordinate...
متن کاملGeminin Is Required for the Maintenance of Pluripotency
Pluripotency requires the expression of the three core transcriptions factors Oct4, Sox2 and Nanog, as well as further, complementary proteins. The geminin protein is part of this network, and was shown to play a role in the regulation of DNA replication, the control of the cell cycle, and the acquisition of neural fate. It is highly expressed in the early embryo, in particular the epiblast and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011